Phytother Res. 2010 Oct;24(10):1554-61. doi: 10.1002/ptr.3147.
Kang LJ1, Lee HB, Bae HJ, Lee SG.
Author information
Abstract
Propolis is a sticky, resinous material that honey bees collect from various plants, and mix with wax and other secretions. The aim of this study was to evaluate the antidiabetic effect of propolis through an analysis of the expression and enzyme activity of glucose-6-phosphatase (G6Pase) and to elucidate the mechanism by which propolis inhibits G6Pase gene expression. When HepG2 cells were incubated in high glucose media (25 mm), G6Pase expression was induced. Propolis significantly reduced the expression and enzyme activity of G6Pase; however, the hypoglycemic effect was not abolished by the phosphoinositide 3-kinase inhibitor, LY294002, and by the mitogen-activated protein kinase (MAPK) inhibitor, U0126. Propolis inhibited the activity of GSK3α and β via the inhibition of serine and tyrosine phosphorylation, specifically, Y279 for GSK3α and Y216 for GSK3β. The phosphorylations of Y279 and Y216 occur through autophosphorylation by GSK3α/β and are involved in their own activity. Although propolis showed antioxidant activity, antidiabetic effect of propolis was not influenced by hydrogen peroxide and N-acetylcysteine. These results suggest that propolis inhibits the expression of G6Pase by inhibiting the autophosphorylation of Y279 and Y216 of GSK3α and β, respectively, which are involved in the activation of GSK3. These findings suggest that propolis may be a potential antidiabetic agent for the treatment of insulin-insensitive diabetes.
Copyright © 2010 John Wiley & Sons, Ltd.
PMID: 20878710 DOI: 10.1002/ptr.3147
[Indexed for MEDLINE]
* THESE STATEMENTS HAVE NOT BEEN EVALUATED BY THE FOOD AND DRUG ADMINISTRATION. THIS IS NOT INTENDED TO DIAGNOSE, TREAT CURE OR PREVENT ANY DISEASE.