J Cell Physiol. 2009 Dec;221(3):642-9. doi: 10.1002/jcp.21898.
Ang ES1, Pavlos NJ, Chai LY, Qi M, Cheng TS, Steer JH, Joyce DA, Zheng MH, Xu J.
Author information
Abstract
Receptor activator NF-kappaB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation and survival. Caffeic acid phenethyl ester (CAPE), a natural NF-kappaB inhibitor from honeybee propolis has been shown to have anti-tumor and anti-inflammatory properties. In this study, we investigated the effect of CAPE on the regulation of RANKL-induced osteoclastogenesis, bone resorption and signaling pathways. Low concentrations of CAPE (<1 microM) dose dependently inhibited RANKL-induced osteoclastogenesis in RAW264.7 cell and bone marrow macrophage (BMM) cultures, as well as decreasing the capacity of human osteoclasts to resorb bone. CAPE inhibited both constitutive and RANKL-induced NF-kappaB and NFAT activation, concomitant with delayed IkappaBalpha degradation and inhibition of p65 nuclear translocation. At higher concentrations, CAPE induced apoptosis and caspase 3 activities of RAW264.7 and disrupts the microtubule network in osteoclast like (OCL) cells. Taken together, our findings demonstrate that inhibition of NF-kappaB and NFAT activation by CAPE results in the attenuation of osteoclastogenesis and bone resorption, implying that CAPE is a potential treatment for osteolytic bone diseases.
PMID: 19681045 DOI: 10.1002/jcp.21898
[Indexed for MEDLINE]
* THESE STATEMENTS HAVE NOT BEEN EVALUATED BY THE FOOD AND DRUG ADMINISTRATION. THIS IS NOT INTENDED TO DIAGNOSE, TREAT CURE OR PREVENT ANY DISEASE.